Extracellular Ca2+ entry and Ca2+ release from inositol 1,4,5-trisphosphate-sensitive stores function at fertilization in oocytes of the marine bivalve Mytilus edulis.

نویسندگان

  • R Deguchi
  • K Osanai
  • M Morisawa
چکیده

An oocyte of the marine bivalve Mytilus edulis, which is arrested at metaphase I, reinitiates meiosis at fertilization. The fertilized oocyte shows increases in intracellular Ca2+ ([Ca2+]i) comprising three different phases: an initial large [Ca2+]i transient, a subsequent low but sustained [Ca2+]i elevation, and repetitive small [Ca2+]i transients. In this study, we have investigated the sources and mechanisms of the sperm-induced [Ca2+]i increases. Application of methoxyverapamil (D-600), an inhibitor of voltage-dependent Ca2+ influx, suppressed the initial [Ca2+]i transient but did not affect the following two phases of [Ca2+]i changes. Injection of heparin, an antagonist of the inositol 1,4,5-trisphosphate (IP3) receptor, inhibited the later two phases without much affecting the initial transient. Combined application of D-600 and heparin almost completely abolished the three phases of the sperm-induced [Ca2+]i changes. Furthermore, Ca2+ influx caused by seawater containing excess K+ was blocked by D-600 but not by heparin, and IP3-induced Ca2+ release caused by photolysis of injected 'caged' derivatives of IP3 was blocked by heparin but not by D-600. These results strongly suggest that two types of Ca2+ mobilization systems, the extracellular Ca2+ entry responsible for an initial [Ca2+]i transient and the IP3 receptor-mediated Ca2+ release responsible for the following two phases of [Ca2+]i changes, function at fertilization of Mytilus oocytes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

External Ca2+ is predominantly used for cytoplasmic and nuclear Ca2+ increases in fertilized oocytes of the marine bivalve Mactra chinensis.

Oocytes of the marine bivalve Mactra chinensis are spawned and arrested at the germinal vesicle stage (first meiotic prophase) until fertilization, without undergoing a process called oocyte maturation. As is the case of other animals, a fertilized oocyte of the bivalve displays increases in intracellular free Ca(2+). We have clarified here the spatiotemporal patterns and sources of the intrace...

متن کامل

Regulation of intracellular calcium in the mouse egg: calcium release in response to sperm or inositol trisphosphate is enhanced after meiotic maturation.

Fertilization of the immature, prophase I-arrested mouse oocyte produces multiple Ca2+ transients similar to those of the mature, metaphase II egg; however, the first Ca2+ transient is much lower in amplitude and shorter in duration. In contrast to prophase I-arrested oocytes, maturing oocytes fertilized after germinal vesicle breakdown have first Ca2+ transients similar to those of mature fert...

متن کامل

Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane.

The depletion of an inositol 1, 4,5-trisphosphate-sensitive intracellular Ca2+ pool has been proposed to be the signal for Ca2+ entry in agonist-activated cells. Consistent with this idea, thapsigargin, which releases intracellular Ca2+ without inositol phosphate formation, has been reported to activate Ca2+ entry in certain cells. We now report the effects of thapsigargin on Ca2+ entry in paro...

متن کامل

Adenophostin A and inositol 1,4,5-trisphosphate differentially activate Cl- currents in Xenopus oocytes because of disparate Ca2+ release kinetics.

Depletion of endoplasmic reticulum Ca2+ stores induces Ca2+ entry from the extracellular space by a process termed "store-operated Ca2+ entry" (SOCE). It has been suggested that the novel fungal metabolite adenophostin-A may be able to stimulate Ca2+ entry without stimulating Ca2+ release from stores. To test this idea further, we compared Ca2+ release, SOCE, and the stimulation of Ca2+-activat...

متن کامل

Independent regulation of Ca2+ entry and release from internal stores in activated B cells

Addition of crosslinking antibody to B lymphocytes results in a rapid rise in cytoplasmic-free Ca2+ ([Ca2+]i) due to release of Ca2+ from internal stores and uptake of Ca2+ across the plasma membrane. Inositol 1,4,5-trisphosphate is believed to mediate the release of internal Ca2+ stores and has also been proposed to mediate extracellular Ca2+ entry. We have compared the properties of these two...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 122 11  شماره 

صفحات  -

تاریخ انتشار 1996